0040-4039/87 \$3.00 + .(Pergamon Journals Ltd.

THE CONVERSION OF FURANS TO 2(3H)-BUTENOLIDES

Andrew Pelter* and Martin Rowlands.

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.

2-Aryl- and 2-alkylfurans are converted into the corresponding 5-organyl-2(3H)butenolides by the oxidation of boron derivatives with m-chloroperbenzoic acid.

Due to our interest in butenolides,¹ particularly those related to the fadyenolides² and piperolides³ and because of our need for synthens for lignan synthesis⁴ we required a general preparation of 5-organylbutenolides for further elaboration. In particular a synthesis based on 2-organylfurans, 1 seemed desirable, as compounds 1 should be stable enough to be safely carried through a variety of procedures prior to a mild controlled oxidation to the required butenolides.

We first accomplished the synthesis of a wide variety of furans 1 by the process shown in equation (1).

$$RBr + \sqrt{\frac{Pd(P\Phi_3)_4}{THF, 50^{\circ}C, 20h}} R \sqrt{\frac{1}{2}}$$
(1)
(Met X = ZnBr, Li) $\frac{1}{2}$

We could find no example of the direct conversion of l to 5-organylbutenolides. This paper describes such a process which can give rise to a large number of substituted butenolides.⁶ Of relevance to our work is the conversion by oxygen of 2-trimethylsilylfurans to the corresponding 5-hydroxy-2(5H)-butenolides⁷ and the oxidation of 2-methyl- and 2-ethyl-5-(dimethoxyboryl)thiophenes by alkaline hydrogen peroxide to the 5-alkyl-1-thio-2(3H)-butenolides.⁸

We felt that the sequence shown in equation (2) held promise of being a general route, though we were unable to predict in any specific case whether 2(3H)-butenolides, $\underline{3}$ or 2(5H)-butenolides, $\underline{4}$ or mixtures, would result.

We first tried the sequence in which X = mesity1, on the premise that the intermediates 2 would be stable and crystalline.⁹ Reaction of furyImagnesium bromide with dimesitylfluoroborane gave 2 (R = H, X = mesity1) as a crystalline solid, but only in 30% isolated yield. Oxidation of this compound with alkaline hydrogen peroxide gave 2(5H)-butenolide in 35% yield. 2-Octylfuran did not give any of the desired product and this approach was abandoned.

We then examined the sequence in which X = OMe. However, yields of 2 (R = H, X = OMe) were poor when trimethoxyborane was used as boronating reagent. However, one equivalent of chlorodimethoxyborane¹⁰ in trimethoxyborane proved a highly effective reagent to yield 2 (X = OMe). In practice these furyldimethoxyboranes are prone to unexpectedly rapid hydrolysis and were generally oxidised in situ.

The results of the study of the oxidation of 2 (X = OMe) are given in the Table.

TABLE

<u>u</u>	xidation of 2-	organy 1-5-(C	inmethoxyboryi/iurans co	J S-Organy -	2(3H)-Dulenoliues
<u>Exp.</u> No.	<u>Organylfuran</u>	<u>Temp.(°C)</u>	Oxidising agent	<u>Product^a</u>	<u>Yield of</u> Ѯ(%) ^b
1	1a	20	NaOH/H202	lą (95%)	0
2	ļa		PCC ^C	" (20%)	Õ
3	н	u	PDCC	" (30%)	Õ
4	le	н	0_2^{d}	le (100%)	0
5	1k 1k	0	MCPBA,THF	3.2 3.2	0 ^e
6	N N	11	MCPBA,Et ₂ 0	" "	32 ^e
7	u	u	MCPBA/Et20/Na2CO3	н	59 ^f
8	н	-78	" 2 2 3	н	94 ^e
9	fe	0	11	З с	72 ^f
10	la		n	3,d	67 <mark>e</mark>
11	là	-78	81	3a	90 [†]
12	le	0	11	3e	91 [†]
13	le lt			3ť	89 ^e
14	li	u	37	3i	88 ^e
15	li	0	II	રેલ રેવ રેલ રેદ રેદ રૂદ્	86 [†]

Oxidation of 2-organy1-5-(dimethoxybory1)furans to 5-organy1-2(3H)-butenolides

a) All products fully characterised. b) Yields are of isolated, purified product. c) Reaction time of 4h. d) Reaction time of 12h. e) 85% MCPBA. f) 100% MCPBA.

Oxidation with oxygen in a Brown hydrogenator¹¹ was ineffective (exp.4) due to lack of reaction. Oxidation with alkaline hydrogen peroxide (exp.1) was also unsuccessful due to preferential hydrolysis. Anhydrous oxidation with chromium reagents (exp.2,3)¹² proved difficult to control and gave low yields of recovered Lithiation of 1b in THF followed by oxidation with meta-chloroperbenzoic acid furan. (MCPBA) was also ineffective, but some product was obtained in ether (exp.5,6). Sodium carbonate was added to the ether prior to oxidation at 0°C, in order to neutralise the meta-chlorobenzoic acid as it formed and this increased the yield Finally, lowering the temperature to -78°C inhibited hydrolysis and ring (exp.7). opening¹³ to give 94% of isolated butenolide 3c based on starting furan 1c, and this became our favoured procedure. Although we generally used 100% MCPBA¹⁴ this was not necessary when anhydrous sodium carbonate was previously added (exp.8,10,13,14). Again, although lowering the temperature of the oxidation to $-78\,^{\circ}$ C was generally advantageous, an excellent yield of 5-octyl-2(3H)-butenolide was obtained at 0°C (exp.15).

Of particular note is that in every case, even when R = alkyl (exp.14 and 15) the product was always the 2(3H)-butenolide, 3, and no trace was found of the readily distinguishable 2(5H)-butenolide, 4. Thus, when water is added to the reaction mixture in the presence of sodium carbonate, protonation occurs at C-3 only without any equilibration, even for the 5-alkyl products.

The sequence failed with furans 1g and 1h, in each case because lithiation was complex or difficult in the conditions tried. With these exceptions the process described is a mild, high yield, one-pot sequence for the conversion of 2-organylfurans into 5-organyl-2(3H)-butenolides, and as such should find wide application. <u>Preparation of 5-phenyl-2(3H)-butenolide</u>, 3a from 2-phenylfuran 1a.

n-Butyl lithium in hexane (6.4 ml of 1.57M, 10 mmol) was slowly added by syringe to a stirred solution of 2-phenylfuran (1.44g, 10 mmol) in dry ether (50 ml) at 0°C under argon. Boron trichloride in hexane (3.33 ml, 1M, 3.33 mmol) was added with stirring to trimethoxyborane (25 ml) in dry ether (50 ml) at 0°C under argon. Both mixtures were allowed to stir for 3h at room temperature and then the chlorodimethoxyborane solution was added by double-ended needle to the stirred solution of 2-phenyl-5-lithiofuran at 0°C. Lithium chloride precipitated and the mixture was allowed to stir for a further hour at room temperature. MCPBA (3.45 g of 100%, 20 mmol) was added to a 250 ml round bottomed flask containing anhydrous sodium carbonate (10.5g, 100 mmol) under argon. Dry ether (75 ml) was added and the mixture cooled to -78° C and maintained at this temperature whilst the solution of 2a was rapidly added by double-ended needle. After 5 min., the solution was allowed to warm to 0°C and then water (50 ml) added.

The organic layer was removed and the aqueous layer washed with ether $(2 \times 25 \text{ ml})$. The combined organic phases were washed with saturated sodium sulphite (50 ml), saturated sodium bicarbonate (50 ml) 1M sodium bicarbonate (50 ml), water $(3 \times 50 \text{ ml})$ and dried (MgSO_4) . Filtration and evaporation of solvent was followed by sublimation at 75°C/0.005 mm Hg to give 5-phenyl-2(3H)-butenolide m.p. 91-92°C, (1.45 g, 90.6%).

We thank the SERC for financial support of this work.

References

1.	A.Pelter, R.Al-Bayati and P.Pushpani, <u>Tetrahedron Lett.</u> , 1986, 27, 749;				
	A.Pelter and R.Al-Bayati, ibid, 1982, 23, 5229; A.Pelter, R.Al-Bayati and				
	W.Lewis, <u>ibid</u> , 1982, 23, 353; A.Pelter, M.T. Ayoub, J.Schultz, R.Hansel and				
	D.Reinhardt, ibid, 1979, 1627; A.Pelter and M.T.Ayoub, J.Chem.Soc.Perkin 1,				
	1981, 1173; R.Hansel, J.Schultz, A.Pelter, M.T.Ayoub and R. Reinhardt,				
	Z.Naturforsch., 1978, 33b, 1020; R.Hansel, J.Schultz, A.Pelter and				
	M.T.Ayoub, Z.Naturforsch., 1979, 34b, 1576; R.Hansel, A.Pelter, J.Schultz				
	and C.Hille, <u>Chem.Ber.</u> , 1976, 109 1617.				
2.	A.Pelter, R.Al-Bayati, R.Hansel, H.Dinter and B.Burke, <u>Tetrahedron Lett</u> .,				
	1981, 22, 1545.				
3.	A.Pelter and R.Hansel, Z.Naturforsch., 1972, 26b, 1186; Phytochem., 1971,				
	10, 1627.				
4.	A.Pelter, R.S.Ward, P.Collins, R.Venkateswarlu and I.T.Kay, Tetrahedron Lett.,				
	1983, 24, 523; <u>J.Chem.Soc.Perkin 1</u> , 1985, 587.				
5.	A.Pelter, M.Rowlands and G.Clements, Synthesis, 1987, 51.				
6.	R.Al-Bayati, Ph.D. Thesis, Univ.College of Swansea, 1983.				
7.	S.Katsumura, K.Hori, S.Fujiwara and S.Isoe, <u>Tetrahedron Lett.</u> , 1985, 4625.				
8.	R.T. Hawkins, <u>J.Heterocyclic Chem.</u> , 1974, Ll, 291.				
9.	A.Pelter, B.Singaram, L.Williams and J.W.Wilson, <u>Tetrahedron Lett.</u> , 1983, 24, 623				
10.	E.Wiberg and H.Smedsrud, <u>Zeit.anorg.u.allg.chem.</u> , 1935, 225, 204.				
11.	C.A.Brown and H.C.Brown, <u>J.Org.Chem.</u> , 1966, 31, 3989.				
12.	E.J.Corey and J.W.Suggs, Tetrahedron Lett., 1975, 31, 2647; C.Gundu Rao,				
	S.V.Kulkarni and H.C.Brown, <u>J.Organomet.Chem.</u> , 1979, 172, C20-22.				
13.	J.Jurczak and S.Pikul, Tetrahedron Lett., 1985, 26, 3039.				
14.	N.N.Schwartz and J.H.Blumbergs, <u>J.Org.Chem.</u> , 1964, 29, 1976.				
	(Received in UK 19 January 1987)				